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Concept

Reduced-order models are useful when a complex system needs to be
simulated in real-time, when multiple simulations are required, or
when low dimensional models are needed for control.
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Concept

Reduced-order models are useful when a complex system needs to be
simulated in real-time, when multiple simulations are required, or
when low dimensional models are needed for control.

They can also illuminate fundamental mechanisms in models
◮ nearby flows (visualize influence of parameters)
◮ discover how energy is transferred through different “modes”

Given a time-dependent, large (or infinite dimensional) system with
low dimensional dynamics, find a low dimensional model that
approximates the system well.

Generate a small number of global basis functions using simulations
that are “typical.”

Build a reduced-order basis using information obtained from given
samples (simulations)
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Weather Forecasting Methods

Reduced-Order Models (ROMs) have a long history:

Principal Component Analysis
◮ Hotelling, Analysis of a complex of statistical variables into principal

components, J. Educ. Psychol., 1933.

Common Factor Analysis
◮ Thurstone, Multiple Factor Analysis, 1947.

Empirical Eigenfunctions
◮ Lorenz, Empirical orthogonal functions and statistical weather

prediction, Statistical Forecasting Project, 1956.
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Other Origins

Statistics: Karhunen [Karhunen, 1946], Loève [Loève, 1955]

Control: Principle Component Analysis, Balanced Truncation [Moore,
1981]

Fluids: Proper Orthogonal Decomposition [Lumley 1967, Sirovich,
1987]
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Idea

We will restrict our attention to models that are

nonlinear

time dependent

parameter dependent
◮ coefficients
◮ initial conditions
◮ boundary conditions
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Two-Step Process

Basis Selection:

Karhunen-Loève Expansion (KLE)/Proper Orthogonal Decomposition
(POD)

Principle Interval Decomposition (PID)

Sampling, e.g. CVT

Model Construction:

Galerkin

Multiscale modeling ideas:
◮ Nonlinear-Galerkin
◮ LES, Patch Dynamics, Homogenization

Updating
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Example: Burgers Equation

To get the basic idea, we develop a reduced-order model for Burgers
equation. This example is from Kunisch and Volkwein [KV99]:

yt(t, x) +
1

2

(
y2(t, x)

)
x

= εyxx(t, x)

with boundary conditions y(t, 0) = 0 = y(t, 1) and initial conditions

y(0, x) =

{
1 x ≤ 0.5
0 otherwise

.

For this example, we take ε as 0.01.
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Example: Burgers Equation

Simulation

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

t
x

Jeff Borggaard (Virginia Tech) Reduced-Order Modeling 1 September 2005 9 / 86



Example: Burgers Equation

Construct an “optimal” low dimensional basis on which to represent
the solution y

{φ1(·), φ2(·), . . . , φr (·)} .
We denote the linear space spanned by this basis as

Pr = span {φ1(·), φ2(·), . . . , φr (·)} ,

and represent a low order solution in this space:

yℓ(t, x) =

r∑

j=1

aj(t)φj (x) ∈ Pr .

Build a model for the amplitude coefficients {aj(·)}, eg. Galerkin
projection of governing equations.
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Example: Burgers Equation

Basis 1: Fourier Basis (based on eigenmodes for ∂xx)
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Example: Burgers Equation

Basis 1: Projected initial conditions, r = 6
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Example: Burgers Equation

Simulation using Fourier Basis
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Example: Burgers Equation

Simulation (for comparison)
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Example: Burgers Equation

Basis 2: Karhunen-Loève Expansion/Proper Orthogonal Decomposition
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Example: Burgers Equation

Basis 2: Projected initial conditions, r = 6
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Example: Burgers Equation

Simulation using KLE/POD Basis
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Example: Burgers Equation

Simulation (for comparison)
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Example: Burgers Equation

Comparison of Both ROMs at T = 1
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KLE/POD (1)

Beginning with a “sample” y(t, x) from either

Analytical Methods

Computational Simulation(s)

Experimental Measurements

etc.

with y(t, ·) ∈ H for each t ∈ T (or y(t) ∈ H).

The first POD mode (basis function) maximizes the Rayleigh quotient,

max
φ

{
1

T

∫

T

|〈y(t, ·), φ(·)〉|2
〈φ(·), φ(·)〉 dt

}
.
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KLE/POD (2)

One Interpretation:

max
φ

{
1

T

∫

T

|〈y(t, ·), φ(·)〉|2
〈φ(·), φ(·)〉 dt

}
.

The first POD mode, φ1, can be interpreted as the direction which
maximizes the time averaged projection of y .

Subsequent modes maximize this quotient over the orthogonal
complement to the span of the current basis elements.

The second POD mode, φ2, would satisfy

max
φ⊥φ1

{
1

T

∫

T

|〈y(t, ·), φ(·)〉|2
〈φ(·), φ(·)〉 dt

}
,

The remaining modes are defined similarly.
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KLE/POD (3)

The POD mode must satisfy the necessary condition

〈R s(x , ·), φ(·)〉 = λφ(x)

Considering H = L2(Ω), we solve

∫

Ω
R s(x , x̄)φ(x̄)dx̄ = λφ(x),

where

R s(x , x̄) =
1

T

∫

T

y(t, x)y∗(t, x̄)dt

is the spatial auto-correlation function.
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KLE/POD (4)

When H is finite dimensional, eg. when y is the solution to a system of
ordinary differential equations

ẏ(t) = f(y(t)) y(0) = y0 ∈ Rn,

we have the analogous form for R s :

Rs =
1

T

∫

T

y(t)yT (t)dt

where the POD vectors are eigenvectors of the symmetric, non-negative
definite matrix Rs ,

Rsφ = λφ.
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KLE/POD (5)

Since Rs is a symmetric, non-negative definite matrix, we know

the eigenvalues are real

there is a full set of orthonormal eigenvectors

these span Rn

For the ODE, y is real and the POD vectors are real.

RsPn = PnΛ

Rs = PnΛ (Pn)T .
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KLE/POD (6)

In nearly every case, the integral in Rs needs to be replaced by a
quadrature.

Given a discrete set of time samples/snapshots

{t1, t2, . . . , tm} ,
we approximate the matrix Rs by

Rs =
1

T

∫

T

y(t)yT (t)dt ≈ 1

T

m∑

j=1

∆tjy(tj )y
T (tj).

If the time samples are equi-spaced, ∆tj = T/m, and Y is the matrix with
components

[Y ]ij = yi (tj),

i.e. time snapshots form columns of Y, then

Rs =
1

m
YYT .
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KLE/POD (7)

SVD Interpretation

Let Y = UΣVT be a singular value decomposition for Y, then

Rsφ =
1

m
YYTφ =

1

m
UΣVTVΣUTφ = U

(
1

m
Σ2

)
UTφ.

Note that if φ = ui , the ith column of U, then

Rsui =
1

m
σ2

i

︸ ︷︷ ︸
λi

ui

so there is a clear connection between the eigenvalue problem for Rs and
the SVD of Y:

POD vectors are left singular vectors

Eigenvalues of Rs are the “time average” of the square of the singular
values.
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KLE/POD (8)

Approximating properties of the SVD

The optimal rank 1 approximation to Y is

Ỹ = σ1u1v
T
1

in the sense that
‖Y − Ỹ‖F ≤ ‖Y − cuvT ‖F

for any constant c , u ∈ Rn, and v ∈ Rm.

We also have the error bound

‖Y − Ỹ‖F =

∥∥∥∥∥∥

min(m,n)∑

i=2

σiuiv
T
i

∥∥∥∥∥∥
F

=




min(m,n)∑

i=2

σ2
i




1/2

.
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KLE/POD (9)

The analogous estimates hold for higher dimensional POD bases

Ur = [u1 u2 · · · ur ] ∈ Rn×r , Σr = diag(σ1, σ2, . . . , σr ) ∈ Rr×r

Vr = [v1 v2 · · · vr ] ∈ Rm×r

Ỹ = UrΣr (Vr )T =

r∑

i=1

σiuiv
T
i

with approximation error

‖Y − Ỹ‖2
F =

min(m,n)∑

i=r+1

σ2
i

φi = ui ai = σivi
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KLE/POD (10)

Consider
Rt = YTY

then
Rtψ = YYTψ = VΣTΣVTψ.

Note that if ψ = vi , then

1

m
Rtvi =

1

m
σ2

i

︸ ︷︷ ︸
λi

vi

we find vi ,
Yvi = UΣVTvi = UΣei = σiui .
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KLE/POD (11)

Thus, upon finding solutions to the eigenvalue problem

1

m
Rtψi = λiψi , i = 1, 2, . . . ,m

we can compute KLE/POD vectors as

φi =
1

σi

Yψi , i = 1, . . . ,min(m, n).

If m < n, then the remaining left singular vectors are not needed to
represent Y and would be reduced.

This is known as the method of snapshots [Sir87], computationally
attractive if m << n.
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KLE/POD (12)

An analogous method can be used to find vi given a ui (and σi).

YTui = VΣUTui = VΣei = σivi .

We now “interpret” our POD eigenvectors φ (of 1
m

YYT ) and ψ (of
1
m

YTY) in terms of the original solution.

〈y(tj ), φi 〉 = ai(tj) = [σiψi ]j

y(tj) ≈
r∑

i=1

ai (tj)φi .
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KLE/POD (13)

The following relations also hold:

1

T

∫

T

y(t)ai(t)dt ≈ 1

m

m∑

j=1

y(tj)ai (tj)

= Y
1

m
σiψi =

1

σi

[Yλiψi ] =
1

σi

φi .

and

1

T

∫

T

a2
i (t)dt ≈ 1

m

m∑

j=1

ai(tj)ai (tj)

=
1

m
ψT

i ψiσ
2
i = λi ,
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KLE/POD (14)

The infinite dimensional case has similar behavior.

In most cases [HLB96],

R s(x , x̄) =
1

T

∫

T

y(t, x)y∗(t, x̄)dt

satisfies

R s(x , x) is finite for each x
∫
Ω R s(x , x)dx <∞.

This allows us to conclude

R s(x , x̄) ∈ L2(Ω × Ω).

Jeff Borggaard (Virginia Tech) Reduced-Order Modeling 1 September 2005 33 / 86



KLE/POD (15)

The result of R s(x , x̄) ∈ L2(Ω × Ω) is that R s is the kernel of the operator

R : L2(Ω) → L2(Ω)

defined as

Rφ(·) ≡
∫

Ω
R s(·, x̄)φ(x̄)dx̄ .

We also know

R is self adjoint

R is bounded (by the norm of R s)

R is non-negative definite

R is compact
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KLE/POD (16)

Thus, we know

The eigenvalues are real and non-negative

The only accumulation point is at 0

There exists an orthonormal basis of eigenvectors for the range of R

Thus, the countable set of eigenvalues are real and can be ordered

λ1 ≥ λ2 ≥ · · · ≥ λj ≥ · · ·

and λj ≥ 0 for all j .
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KLE/POD (17)

We also have the following expansions

R s(x , x̄) =
∞∑

j=1

λjφj (x)φ∗j (x̄)

and

y(t, x) =

∞∑

j=1

aj(t)φj(x)

=

∞∑

j=1

σjψj(t)φj(x)

for almost all t.
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KLE/POD (18)

An equivalent way to characterize φ1 is as a solution to

min
a,φ

{
1

T

∫

T

‖y(t, ·) − a(t)φ(·)‖2dt | ‖φ(·)‖ = 1

}

with the optimal amplitude a1 as

a1(t) = 〈y(t, ·), φ1(·)〉, t ∈ T .
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KLE/POD (20)

Since
a1(t) = 〈y(t, ·), φ1(·)〉, t ∈ T ,

we have

1

T

∫

T

a2
1(t)dt =

∫

Ω
φ∗1(x)

∫

Ω
R s(x , x̄)φ1(x̄)dx̄ dx

=

∫

Ω
λ1φ

∗
1(x)φ1(x)dx

= λ1‖φ1(·)‖2

= λ1.
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KLE/POD (21)

The natural strategy is to build low order models by truncating the
sequence

yℓ(t, x) ≡
r∑

j=1

aj(t)φj(x) ≈
∞∑

j=1

aj(t)φj(x) = y(t, x).

There are natural heuristics for choosing r based on the sequence {λj}.
The relative error in yℓ is

‖y − yℓ‖
‖y‖ =

∑
∞

j=r+1 λj∑
∞

j=1 λj

= 1 −
∑r

j=1 λj∑
∞

j=1 λj

≡ Er .
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KLE/POD (22)

Note: The KLE/POD leads to the optimal low order basis on which to
approximate y in the sense that for any other linear space, eg. span{φ̃j}
(orthonormal), with

y(t, x) =

∞∑

j=1

ãj(t)φ̃j(x)

we have the estimate

n∑

j=1

∫

T

a2
j (t)dt ≥

n∑

j=1

∫

T

ã2
j (t)dt

in other words,
∥∥∥∥∥∥
y(t, ·) −

n∑

j=1

aj(t)φj (·)

∥∥∥∥∥∥
≤

∥∥∥∥∥∥
y(t, ·) −

n∑

j=1

ãj(t)φ̃j(·)

∥∥∥∥∥∥
.

Jeff Borggaard (Virginia Tech) Reduced-Order Modeling 1 September 2005 40 / 86



KLE/POD (23)

However, Er is merely a heuristic for many reasons:

Availability of aj(·) coefficients

Building models vs. Optimally representing data
◮ vary initial conditions, boundary conditions, model parameters
◮ (off design)

Nonlinear models

In other words, the choice of POD basis functions is motivated by best

approximation of the sample y .

This approximation can be very low order in practice.
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KLE/POD (24)

KLE/POD can be remarkably effective (Burgers’ eq. example)
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KLE/POD (25)

KLE/POD - Galerkin simulation with r = 1:
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KLE/POD (26)

KLE/POD - Galerkin simulation with r = 2:
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KLE/POD (27)

KLE/POD - Galerkin simulation with r = 3:
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KLE/POD (28)

KLE/POD - Galerkin simulation with r = 9:
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KLE/POD (29)

KLE/POD - Galerkin simulation with r = 12:
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KLE/POD (30)

Linear properties satisfied by the sample are inherited by the basis.

Recall that

φi =
1

σi

Yψi

thus each φi is a linear combination of the time snapshots.

Let P be a closed linear subspace of L2. Then if all snapshots are in P,
the KLE/POD basis functions are also in P.
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KLE/POD (31)

Consider, for example, the Navier Stokes equations

yt + y · ∇y = −∇p +
1

Re
∆y + f

∇ · y = 0

subject to y(0, ·) = y0(·) and y = 0 on the boundary.

Thus, if each snapshot satisfies ∇ · y(t, ·) = 0, then each POD basis
element will. Likewise for the homogeneous boundary conditions.
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KLE/POD for Discretized Problems (1)

In many problems of interest, y(t, x) will be the solution to a partial
differential equation. Finite dimensional approximations may have the form

yN(t, x) =

n∑

k=1

yk(t)hk(x)

where {hk(·)}n
k=1 is a given set of basis functions:

finite elements

special functions, polynomials, etc.
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KLE/POD for Discretized Problems (2)

To approximate the POD modes, it makes sense to seek representations in
this same basis, i.e.

φN
i (x) =

N∑

j=1

(φi)j hj(x), i = 1, . . . , r .

In this case, substitution of yN and φN into
∫

Ω
R s(x , x̄)φ(x̄)dx̄ = λφ(x)

leads to the matrix eigenvalue problem for POD coefficients p,

1

m
YYTMp = λp,

where M is the so-called “mass matrix” with components

[M]ij =

∫

Ω
hi (x)hj(x)dx .
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KLE/POD for Discretized Problems (3)

The matrix M is symmetric and positive definite. Thus, we can use a
change of variables to create a symmetric eigenvalue problem (see eg.
[SF73], [KV99]).

Let M = LLT be a Cholesky factorization and by premultiplication of LT

we have
1

m
LTYYTL︸ ︷︷ ︸

A

LTp︸︷︷︸
v

= λLTp︸︷︷︸
v

.

Hence, we have a complete set of eigenvectors, with real, non-negative
eigenvalues, etc.

Since vvT = I = pLLTp the POD basis coefficients are M-orthogonal.
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Principle Interval Decomposition (1)

One limitation of KLE/POD is the fact that modes must be good over the
entire time interval. For example, consider the solution to the wave
equation

y(t, x) = y0(x − ct)

and y0(x) = e−x2
.

Then the spatial correlation function

TR s(x , x̄) =

∫ T/2

−T/2
e−(x−t)2e−(x̄−t)2dt

=

√
π

2
e−(x−x̄)2/2

(
erf

(
T − x − x̄√

2

)
+ erf

(
T + x + x̄√

2

))
.
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Principle Interval Decomposition (2)

We have

lim
T→∞

TR s(x , x̄) =

√
π

2
e−(x−x̄)2 = f (x − x̄)

When R s(x , x̄) = f (x − x̄), we say R s is homogeneous.

With this property, we can expand R s as

R s(x , x̄) =
∑

j

cje
2πij(x−x̄)

=
∑

j

cje
2πijxe−2πij x̄

which indicates that
φj(x) = e2πijx

are the eigenfunctions of R(x , x̄). . . the Fourier modes.
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Principle Interval Decomposition (3)

Instead of looking for basis vectors that are good representations to our
signal (solution) over the entire time, we decompose the time into
principle intervals [IJz00].

Thus, we seek solutions of the form

yℓ(t, x) ≈
∑

j

ãj(t)φ̃j(x)

where

ãj(t) =

{
aj(t) t ∈ Tj

0 otherwise

Tj = [tj−1, tj ] are the Principle Intervals

φ̃j are the Principle Modes
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Principle Interval Decomposition (4)

We would like to choose the time intervals and modes so that the
following estimate holds

∫

T

‖y(t, ·) − yℓ(t, ·)‖2 dt ≤ ε

∫

T

‖y(t, ·)‖2 dt.

One means to enforce this estimate is to require

∫

Tj

‖y(t, ·) − yℓ(t, ·)‖2 dt ≤ ε

∫

Tj

‖y(t, ·)‖2 dt.
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Principle Interval Decomposition (5)

There are practical limits on the size of ε to keep the basis size small.

Once selected, the computation of principle intervals and modes follows a
similar approach to POD. They satisfy the minimization problem

min
a,φ

{
1

tj+1 − tj

∫ tj+1

tj

‖y(t, x) − a(t)φ(x)‖2dt | ‖φ(·)‖ = 1

}

.

PID modes are computed sequentially in time

The length of the time interval is determined simultaneously with
each mode (as large as possible that still satisfies the estimate)

The “snapshot” approach is often attractive

POD updating strategy later
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PID: Burgers Equation Example

Basis 3: Principle Interval Decomposition
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Example: Burgers Equation

Basis 1: Projected initial conditions, r = 6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

0

0.2

0.4

0.6

0.8

1

Jeff Borggaard (Virginia Tech) Reduced-Order Modeling 1 September 2005 59 / 86



Example: Burgers Equation

Basis 2: Projected initial conditions, r = 6
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Example: Burgers Equation

Basis 3: Projected initial conditions, r = 6
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Principle Interval Decomposition (6)

Note that the PID basis looks very similar to actual solution snapshots.

As ε→ 0, the PID basis becomes the time snapshots used to construct R s .

PID can detect significant modes that are only important over a small
period of time.

This suggests the more straight-forward approach of using sampling
techniques.
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Sampling (1)

Centroidal Voronoi Tesselations [BDGL03]

K-Means Clustering
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Updating KLE/POD Bases (1)

Given a k dimensional basis on which to build a reduced-order model,
there are many reasons to update this basis:

More data from a forecast

More refined simulations are available

Computation of a PID basis

TR-POD

etc.

We can either compute additional basis elements orthogonal to the given
set, or recompute a new (perhaps larger) basis using this new information.
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Updating KLE/POD Bases (2)

Let {y(t1), y(t2), · · · } be given data and let

Yk = [y(t1) y(t2) · · · y(tk)] ∈ Rn×k

Algorithm: [GSA03]
Let Yk = UkΣkV

T
k with Uk ∈ Rn×k , Σk ∈ Rk×k and Vk ∈ Rk×k .

YkY
T
k = UkΣkV

T
k VkΣkU

T
k = UkΣk︸ ︷︷ ︸ΣkU

T
k︸ ︷︷ ︸ ≡ ŶkŶ

T
k
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Updating KLE/POD Bases (3)

Let
Yr = [y(tk+1) · · · y(tk+r )] ∈ Rn×r

be r additional snapshots.

Decompose Yr as
Yr = UkΓ + U⊥

k Θ

where
Γ ∈ Rk×r , Θ ∈ Rr×r , and U⊥

k ∈ Rn×r

and

UkU
⊥
k = 0 and

(
U⊥

k

)T

U⊥
k = Ir×r .
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Updating KLE/POD Bases (4)

We can now write

Yk+r =
[
ŶkYr

]
=

[
UkU

⊥
k

] [
Σk Γ
0 Θ

]

︸ ︷︷ ︸
Ŝ

.

Let
Ŝ = TΣk+r V̂

T .

This SVD is inexpensive since Ŝ is (k + r) × (k + r). With this
information, we can compute

Yk+r =
[
UkU

⊥
k

]
TΣk+r V̂

T ≡ Uk+rΣk+r V̂
T .

We only need to keep Ŷk+r = Uk+rΣk+r .
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Two-Step Process

Basis Selection:

KLE/POD

PID

Sampling (CVT)

Model Construction:

Galerkin

Nonlinear-Galerkin

Multiscale modeling:
◮ LES, Patch Dynamics, Homogenization

Jeff Borggaard (Virginia Tech) Reduced-Order Modeling 1 September 2005 68 / 86



KLE/POD Galerkin (1)

Given a low dimensional basis

{φ1(·), φ2(·), . . . , φr (·)}

from one of the above strategies, the completion of our reduced-order
model

yℓ(t, x) =
r∑

j=1

aj(t)φj(x)

requires construction of the amplitude coefficients {aj(·)}r
j=1.

These can be obtained by Galerkin projection of the differential equation
model onto Pr = span{φ1, . . . , φr}.
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KLE/POD Galerkin (2)

To parallel our earlier discussion, we first consider the finite dimensional
case.

Consider the ordinary differential equation

ẏ(t) = f(y(t)), y(0) = y0 ∈ Rn

(r << n).

Substitute the expression

yℓ(t) =

r∑

j=1

aj(t)φj

into the ODE and project the equations onto Pr .
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KLE/POD Galerkin (3)

This leads to

r∑

j=1

ȧj(t)φj = f




r∑

j=1

aj(t)φj




r∑

j=1

aj(0)φj = y0

and then

ȧi(t) =

〈

f




r∑

j=1

aj(t)φj



 , φi

〉

ai(0) = 〈y0, φi 〉, i = 1, . . . r ,

since

〈φi , φj 〉 =

{
1 i = j

0 otherwise
.
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KLE/POD Galerkin (4)

For the special case of linear, autonomous ODEs,

f(y) = Ay,

and the amplitude coefficient equations are

ȧi(t) =

〈

A




r∑

j=1

aj(t)φj



 , φi

〉

which simplifies to

ȧ(t) = ΦTAΦ︸ ︷︷ ︸
r×r

a(t) a(0) = ΦTy0

where
Φ = [φ1|φ2| · · · |φr ]︸ ︷︷ ︸

n×r

.
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KLE/POD Galerkin (5)

For PDEs, we follow the standard finite element approach.

As an example, consider Burgers equation

yt(t, x) +
1

2

(
y2(t, x)

)
x

= εyxx(t, x).

The Galerkin finite element problem is:

Find yN ∈ Sh such that

〈yN
t , v〉 = −〈yNyN

x , v〉 − ε〈yN
x , vx〉

for all v ∈ Sh. The solution satisfies the projected initial conditions

〈yN(0, ·) − y0(·), v(·)〉 = 0 for all v ∈ Sh.
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KLE/POD Galerkin (6)

Using yℓ(t, ·) ∈ Pr ⊂ Sh instead of yN(t, ·) ∈ Sh, the KLE/POD Galerkin
equations for the amplitude coefficients satisfy

〈
r∑

j=1

ȧj(t)φj (·), φi (·)
〉

= −
〈

r∑

j=1

aj(t)φj(·)
r∑

k=1

ak(t)φ′k(·), φi (·)
〉

= −ε
〈

r∑

j=1

aj(t)φ
′
j (·), φ′i (·)

〉
,

where φi ∈ Pr for all i = 1, . . . , r . Using the orthogonality property of
{φj}, and the linearity of the inner product, we have

ȧi(t) = −N(a) − ε
r∑

j=1

Kijaj(t) i = 1, . . . , r

where

Kij =

∫

Ω
φ′j(x)φ′i (x)dx .
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KLE/POD Galerkin (7)

For the nonlinear term N(a), we define a sequence of matrices

[
T (i)

]

jk
=

∫

Ω
φj(x)φ′k(x)φi (x)dx

then

N(a) =

〈
r∑

j=1

aj(t)φj(·)
r∑

k=1

ak(t)φ′k(·), φi (·)
〉

= aTT(i)a

Thus, the equation for the amplitude coefficients is

ȧi(t) = −aTT(i)a − ε [Ka]i i = 1, . . . , r

with

ai (0) =

∫

Ω
y0(x)φi (x)dx .
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KLE/POD Galerkin (8)

Time varying boundary conditions.

Approaches:

Homogenize the equations, build a POD basis for the homogenized
equation, then assemble the full model.
Let µ(t, x) be a function that satisfies the boundary conditions and
utilize the centering trajectory approach discussed below.

Build POD bases with nonzero boundary conditions. Project the
boundary conditions onto the POD basis. These are constraints.
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KLE/POD Galerkin (9)

Stabilized POD

Recent numerical experiments suggest that if a stabilized Galerkin finite
element method is required for the simulation due to strong advection (for
example, Burgers equation with ε << 1) then this same stabilized Galerkin
procedure should be used to integrate the coefficient equations (Sachs et
al.).
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KLE/POD Limitations/Extensions

If the data is not in the snapshots/samples, it is not well represented in the
KLE/POD basis.

There is an “art” to choosing appropriate samples. This can be guided by
mathematics.
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Snapshot Selection

Problem (w/ D. Sutton): solve

yt(t, x) = εyxx(t, x)

subject to

y(0, x) = 0, y(t, 0) = sin(t), and y(t, 1) = 0.

and denote the solution by y(t, x ; ε).

Want to develop a reduced-order model that is appropriate for a wide
range of

ε ∈ (ε1, ε2).
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Snapshot Selection
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Snapshot Selection

Our approach:

We want to find φ to maximize the time averaged and ε averaged
projection

max
φ

{
1

∆ε

∫ ε2

ε1

1

T

∫

T

|〈y(t, ·; ε), φ(·)〉|2
〈φ(·), φ(·)〉 dt dε

}

.
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Snapshot Selection

Our previous discussion holds upon defining

R s(x , x̄) =
1

ε2 − ε1

∫ ε2

ε1

1

T

∫

T

y(t, x ; ε)y(t, x̄ ; ε)dt dε

≈ 1

T

g∑

k=1

wk

∫

T

y(t, x ; εk)y(t, x̄ ; εk)dt.

To compute coefficients of the POD basis vectors, define

Rs =
1

m

[
w1Y(ε1)Y

T (ε1) + · · · + wgY(εg )YT (εg )
]
M

and find eigenvectors of Rs ...
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Snapshot Selection

Comparison of Midpoint and Gauss quadrature rules
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A Parallel KLE/POD Algorithm

The following algorithm is known as the filtered subspace iteration

(Gugercin):

Each processor, Pk , k = 1, 2, . . . , np performs concurrently:

(1) Initialization.

(a) Calculate the dominant
m right singular vectors

of local JkWk : V
(1)
k .

(b) All-to-all send of local V
(1)
k ;

Receive {V(1)
i }i 6=k from other processors;

Assemble the starting block :

V(1) =
[
V

(1)
1 , V

(1)
2 , . . . , V

(1)
np

]
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A Parallel KLE/POD Algorithm

The following algorithm is known as the filtered subspace iteration:

(2) Start Iteration.
For j = 1, . . . , Jmax

(a) Calculate

W
(j)
k = (JkWkV

(j))TJkWkV
(j).

(b) All-to-all send of local W
(j)
k ;

Receive {W(j)
i }i 6=k from other processors;

Sum blocks to get
W(j) = (WV(j))T WV(j).

(c) Calculate locally:
W(j) = Z1Σ

2
1Z

T
1 ;

Û
(1)
k = W1V

(1)Z1Σ
−1
1 .
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A Parallel KLE/POD Algorithm
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